

BGP Security RPKI

Massimiliano Stucchi, Ondřej Caletka RIPE NCC Learning & Development

Introduction

ROAs

Demo: Create ROAs

Deploying RPKI Validators

Demo: Running Validators

Validation

Demo: Setting up BGP Origin Validation

Demo: Discarding BGP Invalids

Introduction

Section 1

Routing on the Internet

"Internet Routing Registry"

Question

Is the Internet Routing Registry (IRR) enough for BGP security?

Problem Statement

- Some IRR data **cannot** be fully trusted
 - Accuracy
 - Incomplete data
 - Lack of maintenance

- **Not** every RIR has an IRR
 - Third party databases need to be used
 - No verification of who holds IPs/ASNs

Resource Public Key Infrastructure

Ties IP addresses and ASNs to public keys

Follows the hierarchy of the registries

Authorised statements from resource holders

- "ASN X is authorised to announce my Prefix Y"
- Signed, holder of Y

A Short History

- Operated since 2008 by all RIRs
 - Community-driven standardisation (IETF)

- Adds crypto-security to IP addresses and ASNs
 - Provides data you can trust

RIPE NCC Root Certificate

Self-signed

LIR Certificate

Signed by the Root private key

ROAs

Section 2

Elements of RPKI

Verifying others

14

Elements of RPKI

Verifying others

Question

Have you created **RPKI ROAs** for your prefixes?

What is a ROA?

An **authorised statement** from a resource holder

ROA

Prefix Origin Prefix is authorised to be announced AS Number

- LIRs can create a ROA for their resources
- Multiple ROAs can exist for the same prefix
- ROAs can overlap

What is in a ROA ?

You created a single ROA authorising the entire /22

Max length

/22

How should we use max-length?

Create ROAs for BGP announcements only

Max length

/22

Quiz time!

Which information is correct about **max-length?**

- **A.** It is an optional field
- **B.** It is a mandatory field, you cannot leave it empty
- **C.** It is the maximum prefixlength a ROA is authorized to advertise
- D. It is the maximum prefix
 length you can announce in
 BGP

Quiz time!

According to this ROA, which announcements will be considered as **valid** and **accepted** by the router?

A. 193.0.24.0/22

- **B.** 193.0.24.0/23
- **C.** 193.0.26.0/24
- **D.** 193.0.24.0/24
- **E.** 193.0.25.0/24

ROA

Prefix: 193.0.24.0/23 Origin: AS65530 Max-length: /24

ROA Signature

ROA

signature

Prefix is authorised to be announced by AS Number

RPKI Certificate Structure

Certificate hierarchy follows allocation hierarchy

Hosted or Delegated RPKI

Hosted RPKI

- RIR hosts a CA and signs all ROAs
- Automate signing and key rollovers
- Allows you focus on creating and publishing ROAs

Delegated RPKI

- Run your own Certificate Authority software
 - Dragon Research Labs, RPKI Toolkit
 - NLnet Labs, Krill

- Setup connection with RIPE NCC CA
- Generate your LIR certificate and get it signed by parent CA

Logging in to the RPKI Dashboard

Create a Certificate Authority for bh.viacloud

RIPE NCC Certification Service Terms and Conditions

Introduction

This document will stipulate the Terms and Conditions for the RIPE NCC Certification Service. The RIPE NCC Certification Service is based on Internet Engineering Task Force (IETF) standards, in particular RFC3647, "Internet X.509 Public Key Infrastructure Certificate Policy and Certification Practices Framework", RFC3779, "X.509 Extensions for IP Addresses and AS Identifiers", and the "Certificate Policy (CP) for the Resource PKI (RPKI)".

Article 1 – Definitions

Type of Certificate Authority

You can choose between asking the RIPE NCC to host your RPKI Certificate Authority (Hosted RPKI) or running your own Certificate Authority (Delegated RPKI).

Select "Hosted" if you would like the RIPE NCC to host your Certificate Authority, keys, ROAs, manifests etc. and publish the information in our repository. You will only need to maintain your ROAs in our dashboard. This is the recommended option if you are not an RPKI expert.

Select "Delegated" to run your own Certificate Authority and and to host your own keys, ROAs, manifests etc. You will need to run additional software to proceed.

- OHosted
- Delegated

RPKI Dashboard

RPKI Dashboard ALERTS ARE SENT TO 3 ADDRESSES				
🔁 2 BGP Announcements 🛛 🗄 2 ROAs				
🧧 2 Valid 🛛 📒 0	Invalid 🛛 🔽 0 Unknow	n 🧧 2 OK	2 OK 🛛 O Causing problems	
BGP Announcements	Route Origin Authorisat	ions (ROAs) History	Search	
₣	elected BGP Announcement	s	☑ Valid ▲ Invalid	🛛 Unknown
Origin AS	Prefix	Current Status		
AS2121	193.0.24.0/21	VALID		12
AS2121	2001:67c:64::/48	VALID		×
Show 25 🛊 of 2 items				

Certifying PI Resources

Requested and managed by PI End User or by Sponsoring LIR

1. Complete the wizard successfully

Start the wizard to set up Resource Certification for PI End User resources

- 2. Login to https://my.ripe.net and request a certificate
 - Sign in with your RIPE NCC Access account
- 3. Manage your ROAs

Questions

Demo!

Creating ROAs

It's time to try this yourself!

Connect to Localcert: https://localcert.ripe.net/#/

Deploying RPKI Validators

Section 3

Elements of RPKI

<section-header>

RPKI Validators

- Software that creates a local "validated cache" with all the valid ROAs
 - Downloads the RPKI repository from the RIRs
 - Validates the chain of trust of all the ROAs and associated CAs
 - Talks to routers using the RPKI-RTR Protocol

Trust Anchor Locator (TAL)

Relying Party

Relying Party

BGP Announcements

AS111	10.0.8.0/22
AS222	10.0.6.0/24
AS333	10.4.16.0/20
AS111	10.0.12.0/22
AS111	10.0.16.0/22
AS111	10.0.20.0/22

BETTER ROUTING DECISIONS

RPKI Validator Options

Routinator

- Built with Rust, built by NLNetlabs
- rpki-client
 - Part of OpenBSD project, written in C
- OctoRPKI
 - Cloudflare's Relying Party software, written in the Go

• FORT

- Open source RPKI validator, Written in C

Links for Validators

RPKI Validators:

https://github.com/NLnetLabs/routinator.git

https://rpki-client.org/

https://github.com/cloudflare/cfrpki#octorpki

https://github.com/NICMx/FORT-validator/

For more info...

https://rpki.readthedocs.io

Demol

Running Validators

How to Configure Validators

- Run at least **two** validators
 - Routinator (0.8.2)
 - FORT (1.4.2)

- Configure the **correct TALs**
 - They have already been downloaded
 - ARIN TAL needs to be installed separately

Start the Routinator

On the Server:

routinator server -- rtr 100.64.1.1:3323

TAL directory is **missing!**

We need to initialize via init command!

[root@server1 ~]# routinator server --rtr 100.64.1.1:3323
Missing TAL directory /root/.rpki-cache/tals.
You may have to initialize it via 'routinator init'.

[root@server1 ~]# routinator init Before we can install the ARIN TAL, you must have read and agree to the ARIN Relying Party Agreement (RPA). It is available at

https://www.arin.net/resources/manage/rpki/rpa.pdf

If you agree to the RPA, please run the command again with the --accept-arin-rpa option.

[root@server1 ~]# routinator init --accept-arin-rpa Created local repository directory /root/.rpki-cache/repository Installed 5 TALs in /root/.rpki-cache/tals

Start the Routinator

On the Server:

routinator server -- rtr 100.64.1.1:3323

Check if it's running

ps aux | grep routinator


```
[root@server1 ~]# routinator -v vrps | grep 193.0.24.0/21
rsyncing from rsync://localcert.ripe.net/ta/.
rsync://localcert.ripe.net/ta: successfully completed.
rsync://localcert.ripe.net/ta: The RIPE NCC Certification Repository
is subject to Terms and Conditions
rsync://localcert.ripe.net/ta: See http://www.ripe.net/lir-services/
ncc/legal/certification/repository-tc
*
*
*
121,193.0.24.0/21,21,ripe-ncc-pilot
[root@server1 ~]#
```

Start FORT validator

On the Server:

fort ---init-tals -tal=/etc/fort/tal

[root@server1 ~]# fort --init-tals --tal=/etc/fort/tal
Please download and read ARIN Relying Party Agreement (RPA) from
https://www.arin.net/resources/manage/rpki/rpa.pdf. Once you've read
it and if you agree ARIN RPA, type 'yes' to proceed with ARIN's TAL
download:

yes

Successfully fetched '/etc/fort/tal/arin.tal'!
Successfully fetched '/etc/fort/tal/apnic.tal'!
Successfully fetched '/etc/fort/tal/afrinic.tal'!
Successfully fetched '/etc/fort/tal/ripe.tal'!
Successfully fetched '/etc/fort/tal/lacnic.tal'!

Start FORT validator

On the Server:

systemctl start fort

Check if it is running and the logs (exit with ctrl-c):

Systemctl status fort

journalctl –u fort

- FORT will not start RTR server before it does the validation for the first time.
- It listens on port **323** by default.
- Configuration is in **/etc/fort/config.json**

• To check whether FORT is listening

[root@server1 ~]# ss -tlnp | grep fort LISTEN 0 128 100.64.1.1:323 users:(("fort",pid=1009,fd=4))

```
root@server1 ~]# journalctl -u fort -f
--- Logs begin at Mon 2021-02-08 11:51:24 CET. ---
Feb 08 14:34:46 server1 fort[1009]: INF: - Real execution time: 132
secs
Feb 08 14:35:46 server1 fort[1009]: INF: Starting validation.
Feb 08 14:35:46 server1 fort[1009]: INF: - Current serial number is
0.
Feb 08 14:37:58 server1 fort[1009]: INF: Checking if there are new or
modified SLURM files
Feb 08 14:37:58 server1 fort[1009]: INF: Applying configured SLURM
Feb 08 14:37:58 server1 fort[1009]: INF: Validation finished:
Feb 08 14:37:58 server1 fort[1009]: INF: - Valid Prefixes: 4740
Feb 08 14:37:58 server1 fort[1009]: INF: - Valid Router Keys: 0
Feb 08 14:37:58 server1 fort[1009]: INF: - Current serial number is
0.
Feb 08 14:37:58 server1 fort[1009]: INF: - Real execution time:
```

[root@server1 ~]# cat /var/lib/fort/roas.csv | grep 193.0.24.0/21
AS2121,193.0.24.0/21,21

Questions

Validation

Section 4

ROA Validation

ROA Validation

Quiz time!

What does it mean if a ROA is "invalid"?

- A. There is no ROA for that specific prefix
- B. Validity period of the LIR certificate expired
- C. A ROA exists for the prefix but max-length or ASN does not match.
- D. Chain of trust fails and the ROA can not be validated.

BGP Prefix Origin Validation-RFC6811

RPKI Validation States

Take the poll!

The RPKI status of a specific prefix in the BGP table is shown as **"Invalid"**.

What does this mean?

Whitelisting

Whitelisting

RPKI Status RIPE

Validation results for unique Prefix-Origin pairs in Region RIPE (IPv4)

Demo!

Setting up BGP Origin Validation

Prefix belongs to AS103

Setup Origin Validation in AS101

- We are using **FORT** and **Routinator** validator options
- Validators are preconfigured
- RPKI-RTR needs to be configured on **AS101 router**
- **AS102 router** will be configured to announce both its networks and **AS103 prefixes**

ROAs Created in the First Demo

🔁 2 BGP Announcements 🛛 🗄 4 ROAs							
🖻 2 Valid 🛛 📔 0 Invalid 🔹 0 Unknown		nown	🧧 4 OK 🛛 🔷 0 Causing problems		blems		
B	GP Announcements	Route Origin Author	isations (ROAs)	History	Search		
	[•] D Discard Changes	道 Delete ROAs	🛕 Ca	using Problems	S Not Causing Problems	+ New ROA	
	AS number	Prefix	Most	specific length ed	Affects		
	A52121	2001:67c:64::/48	48		0	đ	
	AS2121	193.0.24.0/21	21		1	đ	
	AS103	193.0.26.0/24	24		0	☞ 前	
	AS102	193.0.25.0/24	24		0	e ii	
Show 25 🗘 of 4 items							

Configure Validator Connection

On AS101 router:

(config)# conf t
(config)# router bgp 101
(config-router)# bgp rpki server tcp 100.64.1.1 port 3323 refresh 300
(config-router)# bgp rpki server tcp 100.64.1.1 port 323 refresh 300

and check it

show ip bgp rpki servers | i ESTAB
show ip bgp rpki table

Let's Check How We're Doing...

U1_Router#show ip bgp rpki servers | i ESTAB

Connection state is ESTAB, I/O status: 1, unread input bytes: 0 Connection state is ESTAB, I/O status: 1, unread input bytes: 0

U1_Router#sho ip bgp rpki table 1547 BGP sovc network entries using 247520 bytes of memory 3851 BGP sovc record entries using 123232 bytes of memory Network Maxlen Origin-AS Source Neighbor FORT 100.64.1.1/323 5.32.168.0/21 15836 0 21 5.32.168.0/21 15836 100.64.1.1/3323 21 0 5.35.224.0/19 0 100.64.1.1/323 8972 24 Routinator 100.64.1.1/3323 5.35.224.0/19 8972 0 24 29066 5.35.224.0/19 0 100.64.1.1/323 24 5.35.224.0/19 29066 100.64.1.1/3323 0 24

Configure BGP announcements

- Let's configure Router in AS102 to announce prefixes!
- Check origin validation on AS101 router!

RPKI Valid


```
U1_Router#show ip bgp 193.0.25.0/24
BGP routing table entry for 193.0.25.0/24, version 1598443
Paths: (1 available, best #1, table default)
Not advertised to any peer
Refresh Epoch 1
99 102
192.168.1.2 from 192.168.1.254 (99.0.0.1)
Origin IGP, metric 0, localpref 100, valid, external, best
path 7FD8EAB30678 RPKI State valid
rx pathid: 0, tx pathid: 0x0
```

RPKI Invalid

Prefix belongs to AS103!

```
U1_Router#show ip bgp 193.0.26.0/24

BGP routing table entry for 193.0.26.0/24, version 0

Paths: (1 available, no best path)

Not advertised to any peer

Refresh Epoch 1

99 102

192.168.1.2 from 192.168.1.254 (99.0.0.1)

Origin IGP, metric 0, localpref 100, valid, external

path 7FD8EAB30708 RPKI State invalid

rx pathid: 0, tx pathid: 0
```

Prefix Without a ROA

No ROA for this one!

U1_Router#show ip bgp 20.20.20.0/24 BGP routing table entry for 20.20.0/24, version 1598444 Paths: (1 available, best #1, table default) Not advertised to any peer Refresh Epoch 1 99 102 192.168.1.2 from 192.168.1.254 (99.0.0.1) Origin IGP, metric 0, localpref 100, valid, external, best path 7FD8EAB305E8 RPKI State not found rx pathid: 0, tx pathid: 0x0

Questions

Demol

Discarding BGP Invalids

After Validating...

- You have to make **decisions**
 - Accept or discard the BGP Announcement
 - As temporary measure, you could influence other attributes, such as Local Preference
- You can manage this by using **route-map**

Configure Route Maps

Configure Route-map on the router of **AS101**

```
(config-router)# route-map rpki-accept permit 10
(route-map)# match rpki valid
(route-map)# set local-preference 110
(route-map)# route-map rpki-accept permit 20
(route-map)# match rpki not-found
(route-map)# set local-preference 80
```

Add Route Map to Neighbour

(config)# router bgp 101
(config)# address-family ipv4
(config)# neighbor 192.168.1.254 route-map rpki-accept in

clear bgp ipv4 unicast 192.168.1.254

And have a bit of patience. The full routing table for both IPv4 and IPv6 needs to be re-evaluated.

Check Your Work

show ip bgp XXX

RPKI Valid


```
U1_Router#show ip bgp 193.0.25.0/24
BGP routing table entry for 193.0.25.0/24, version 2205270
Paths: (1 available, best #1, table default)
Not advertised to any peer
Refresh Epoch 3
99 102
192.168.1.2 from 192.168.1.254 (99.0.0.1)
Origin IGP, metric 0, localpref 110, valid, external, best
path 7FD962379360 RPKI State valid
rx pathid: 0, tx pathid: 0x0
```

RPKI Invalid

Prefix belongs to AS103!

U1_Router#show ip bgp 193.0.26.0/24 % Network not in table

Because RPKI state is Invalid!

Prefix Without ROA


```
U1_Router#show ip bgp 20.20.20.0/24
BGP routing table entry for 20.20.20.0/24, version 2240082
Paths: (1 available, best #1, table default)
Not advertised to any peer
Refresh Epoch 3
99 102
192.168.1.2 from 192.168.1.254 (99.0.0.1)
Origin IGP, metric 0, localpref 80, valid, external, best
path 7FD95FF03740 RPKI State not found
rx pathid: 0, tx pathid: 0x0
```


Questions

Learn something new today! academy.ripe.net

RIPE NCC Certified Professionals RIPE Database Associate

https://www.ripe.net/certifiedprofessionals

	The Er	nd!	Кр	ай	Y Diwe	edd
* 1	- 11	Соңы	τI	-no	Fí	Finis
عياله	لک End	de F	יג נ invez	איןי h	Liðugt	Кінець
Konec	Kraj	Ë	nn	Fund	يايان	
Lõpp	Beigas	Vége	Sc	on Ar	n Críoch	Kpaj
Fine	הסוף	Endir	S	fârşit	Fin	Τέλος
E	inde	Конец	1	5	Slut s	Jutt
დასასრული Pabaiga						
Fim	Am	aia	Lopp	ou T	miem	Koniec